Comparison of Calibration Algorithms for Estimation of
Rainfall Using Weather Radar

S. Chumchean and A. Sharma
nd Environmental Engineering, The University of New South Wales,

Sydney 2052, Australia (siriluk @civeng.unsw edu.au)

Abstract: The use of data {rom a weather radar network is an efficient way of observing the structure and
behaviar of a rainfall ficld. A weather radar can provide spatially and temporally continuous measurements
covering a large area, that can be used almost simultaneously as the storm occurs. However, it is widely
recognized that the algorithms used to estimate rainfall based on radar observations have a high degree of
uncertainty. This uncertainty may be caused by the variability of rainfall drop size distribution, the variation
of reflectivity with height and with range, the temporal and spatial resotutions adopted for sampling the radar
reflectivity, and radar bardware miscalibration and noise. Therefore, the use of radar-derived rainfall products
in hydrological applications requires a proper specification of the relationship between radar reflectivity and
rainfall rate. The aim of this paper is to study the methods used to estimate rainfall based on reflectivity.
identify scenarios where the method may be found wanting, and develop alternatives that are able to remove
the identified deficiencies. Two rainfall estimation algorithms are examined. The first involves specification
of a theoretically prescribed parametric relationship, and the second attempts to match rainfall quantiles to
reflectivity quantiles for the same exceedence probability. A new approach that combines certain aspects of

—the-above twomethods Ts-formuizztcd-:--_Synthetlu raﬂma;lwreﬂeuu’n{y -data-are-used-io-test-ihe- {}fgxbie'nv-}' and—e

applicability of all three rainfall estimation methods. A 6-month rainfall-reflectivity record from the Kurnell
radar at Sydney is used to illustrate the applicability of the proposed method to real data.
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1. INTRODUCTION g ofenietated o the rainfall rate (Ry based onrthe—

foliowing parametric relationship:
The frequency, accuracy and vesolution of

hydrologic records is a major limitation in the Z = AR" {0
accurate modelling of hydrologic events. The
advent of the weather radar has provided the Where A and B are constanis estimated using
means for measuring rainfall continuously at fine actual raingauge observations. It is imporlant o
spatial and lemporal resolutions. However, note that the above relationship e.q.(1) is valid
considerable uncertainty still remains in the under some rather stringent assumptions which do
procedures used to estimate the rainfall from not hold true in real situations. As a resull,
weather tadar observations. This paper discusses significant differences are possible when rainfall
the procedures that are currently in use for estimated from radar reflectivity is compared (o
estimation of radar rainfall, highlighting their rainfall measurements using a  network of
advantages and limitations, and proposes a new raingauges.
approach that reduces some of the uncertainty
involved. The most common and widely used procedure for
estimating rainfall from a weather radar is  the
A weather radar measures the power reflecied non-linear regression fitting of simultaneous
back by raindrops, and uses this as the basis of radar-reflectivity ohservations (Z) and raingauge
estimaiing rainfall iniensity. The backscattered rainfall measurements {R) . As the "tue" Z-R
power is proportional to the reflectivity {Z), which relaticnship depends on many factors which

incinde the nature of the rainfall drop-size
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distribution, the appropriate values of A and B are
dependent upon the type of precipitation captured
by the radar beam. Empirical Z-R relationships and
the variations from storm to storm and within
individual storms have been studied extensively
over the part 50 years [Joss and Waldvogel, 19901,

Another algorithm for estimating rainfall from
radar observations is the probability maiching
method (PMM), proposed by Rosenfeld et al.
[1993]. The rationale behind the PMM method is
the fact that ohserved reflectivity (Z) is often very
different from the true reflectivity (Z') near the
surface, which would be better related to the
rainfall as dictated by e.q. (1). The difference
between observed and true reflectivity causes high
variability in the fitted Z-R relationship. The PMM
approach attempts to account for all such
differences by estimating the rainfall such that its
probability distribution is exactly the same as that
for the radar reflectivity. In a statistical sense, the
PMM method is matching the marginal probability
distributions of the reflectivity and rainfall rate
variables, without considering the joint distribution
or inter-relationship of these variables. While this
is not a major disadvantage in many situations,
such an approach will give an inaccurate answer
when there are hotspots, climatological noise, or
range dependent biases in the actval radar data.

Rosenfeld et al. {1994] tried to moderate this effect
by forming pairs of space-time windows small
encugh to maintain some physical relevance. This

rainfall. Application of this procedure to two
months of radar data from Melbourne, Florida
shows satisfactory convergence of the model's
parameters {Anragnostou et al., 19991

As the calibration and validation of radar estimated
rainfall are based upon the raingauge network,
differences in measured rainfall between any two
rainfall measuring sensors, even though they might
be located close to each other, causes ditficulties in
formulating consistent Z-R relationships. In a
statistical sense, such differences are equivalent to
a significant amount of neise being present in the
radar estimated rainfall. Consequently, no optimal
Z-R relationship that is able to remove all the

noise, can be expected 1o exist [Seed et al., 1997].

A new radar rainfall estimation approach is
proposed in this paper. This approach attempts to
reduce the uncertainty in the estimated rainfall by
combining cerfain aspects of a  prescribed
paramelric relationship with the PMM method,
The rationale behind the approach is to formulate
an altered measure of reflectivity that can be
expected o have a monotonic relationship with
rainfall, which can then be used in a PMM type
approach. What follows is a description of the
algorithm for the proposed method. This is
followed by application to a synthetically
generated rainfali-reflectivity dataset to illustrate
the utitity of the method under specific
circumstances. We conclude with an application of
the method to 6-months of rainfall-reflectivity data

modified method is called Window PMM
(WPFMM). An advantage of WPMM is that the
selected Z-R  relationship is related to the
variability associated with radar range and other
parameters. However, the pumber of rainfall-
reflectivity pairs used in the apalysis are reduced.

To accommodate the effect of some of the physical
factors, Ciach et al. [1997] proposed a
conceptuaily different Z-R calibration procedure.
This procedure conceptualises the calibration
problem as an integrated optimisation of the whole
radar rainfall algorithm. The algorithm used global
optimisation with an objective function which
minimises the root mean square error {RMSE)
between radar rainfall and raingauge rainfall of the
final product.

A different form of the parametric Z-R relationship
has been proposed by Anagnostou [1997]. He
proposed an adaptive global optimisation of six
main parameters in real time, aimed at reducing
the effect of range and storm type in the radar
reflectivity observations. This procedure can
simultaneously estimate all the parameters by
optimising a criterion which minimises differences
between the observed and estimated raingauge

from the Kurnell radar in Sydney, Australia,

2. PROPOSED ALGORITHM

Some sources of uncertainty in the Z-R
relationshiEEee:
e  Observed reflectivity is often very
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different from the true reflectivity due to the
averaging of the real reflectivity field by the beam.

e The effects of such averaging are
compounded because of necessity of comparing
grid-averaged reflectivities with point raingauge
measursments.

s Observed reflectivity can also be different
as a function of distance or range due to increases
in size and elevation of the radar sampling volume.

e Another imporiant source of such
difference is the wvariation in raindrop size
distribution (DS} between puise volume (which
is at a higher altitude) and the surface.

Unfortunately the first two factors cannot easily be
reduced or removed, and have o be accepted as a
source of white noise in radar reflectivity
measurements. But the uncertainty caused by the



last two factors might be reduced using
appropriately formulated corrections, For example,
one may use a relationship that corrects for
systematic biases in reflectivity introduced because
of increased distances from the radar, which in-
turn causes the radar beam io scan at elevations
that are greater than the elevation for cells that lie
close proximity to the radar. Similarly, one may
use a relationship that transforms the measured
reflectivity to a variable that can be considered to
be independent of changes in rainfall drop-size
distributions, or, changes [rom one storm type {o
another. Once such transformations have been
performed, what is feft could be treated as noise in
formulating rainfall estimation algorithms. While
one approach to estimate rainfall from such a
transformed reflectivity field would be to
formulate a parameiric relationship between the
variables, as is done in e.q.{1}, a more appropriate
approach would be to match same probability
quantiles of the two variables involved (this being
the rationale of the PMM approach mentioned
earlier). Such an approach will be superior to the
prescription of a parametric relationship in all
situations where the parametric relation is not fully
approgpriate,

The proposed method for estimating rainfall would
work as follows:

e Transform measured reflectivity (£) to 2

different variable (27 that can be expected to
gl e £ol]

intensity were generated using a  lognormal
distribution with mean of .45 and standard
deviation of .45, This distribution was used in a
case study of orographic rainfall in the foothilis of
the Southern Alps of New Zealand [Seed et al.,
1997].  Corresponding reflectivity values were
formulated sc as to have a range-dependent hias,
using the following relationship:

B
By (2}

Zo A T *e,
b 1+an:*r.’SO
¢

where A and B are the Z-R relationship parameters
which correspond to  the conventional Z-R
relationship, %, is a parameter which differentiates
between convective and stratiform cloud types
[Tokay and Short, 1996], the parameter arc control
the range correction applied on the rainfall
estimates for the convective storms, Sy is assumed
to be 200 km, representing the effective radar

range for rainfall estimation, aed £, is the noise
term, which has been generated by using a
lognormal  distribution  with  zere mean  and
different standard deviations that define the noise
level in the resulting data.

3.1 Radar Rainfall Calibration
A 300 hour long synthetic time series of rainfall

and reflectivity corresponding io a network of 28
raingauges was generated and used for calibration

have—a—-consistent 1a.1u'n§uﬁ5h§§) wWitn—ratiat
irrespective of differences due to distance
from radar, or differences in the storm type.

¢ Formulate empirical cumulative disiribution
functions (CDFs) for the transformed
reflectivity and measured rainfall.

e FEstimate  rainfall. for new.  storms. by first

of radar rainfall. The noise term g was gencrated
such that the log-transformed noise had standard
deviations equal to 0.1, 0.2 and 0.3,

To investigate the accuracy of the radar rainfall
estimation - algorithms, the R-square of each

estimating the transformed reflectivity {£7,
then estimating its exceedence probability,
which is then used to estimate a rainfali value
that has the same exceedence probability,

Both synthetic data and the 6-month rainfall-
reflectivity data record from the Kurneli radar at
Sydney have been used to illustrate the efficiency
and applicability of the existing radar rainfall
gstimation algorithms and the newly proposed
algorithm.

3. TESTING THE EFFICIENCY AND

APPLICABILITY OF RADAR
ESTIMATED RAINFALL ALGORITHMS
(SYNTHETIC DATA)

Svnthetically generated raintfall-reflectivity data
were generated using a method described in Seed
et al. [1997} Synthetic time series of rainfail

raiffall estiation algoTitim ~Way Hicasured using
e.q. (3). An R-square of one indicates that the
estimated radar rainfall is a perfect fit to the
raingauge rainfall, while a zero R-square implies
otherwise. The estimated radar rainfall has lower
accuracy than the mean of raingauge rainfall when
R-sgquare i less than zero.

NN,

> Y (R, -R)

RY =l

m My

ZZ{Rx W:é&’ )2

i=t je=l

(3)

where R, is the raingauge accumulalion at the jth
gauge, R, is the radar accumulation around this
gauge, both for the ith time period, N; is the
number of raingauges, N, is the aumber of tme

periods and &, is the medn of raingauge rainfail.

Altogether, five plausible rainfall  estimation
algorithms were studied:
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+ Algorithm I: Use default parameter values of
the Z-R relationship (A =200 and B = 1.6).

o Algorithm 2:Use PMM method by matching
the probability of exceedance between generated
reflectivity and raingauge rainfail.

e Algorithmn 3 Estimate A and B for the Z-R
relationship by using an optimisation approach
with the objective of minimizing RMSE between
radar and raingauge accumulation as shown in 2.q.
(4).

L

Yz
NN, )= R )T 4)
‘N,Ng E;if?r(l,_}) Ry([,_])] }

RMSE = {

o Algorithm 4: Use  optimisation  approach
associated with range effect correction scheme to
estimate A, B, b, and arc parameter of the Z-R
relationship. The objective of this optimisation
algorithm is the same as algorithm 3.

s Algorithm 5: Combination  of  prescribed
parametric relationship and PMM method by
matching the CDF of transformed reflectivity and
raingauge rainfall (Proposed algorithm).

The calculations in the algorithm 5 involve the
following steps:

Stepl: Estimate transformed reflectivity (Z7) by
using  the  prescribed  parametric
relationship.

Step2:  Calculate the CDF of the wansformed
reflectivity obtained from stepl, and the
CDF of raingauge rainfall.

rainfall slgorithms when the parameters of the Z-R
relationship have not heen estimated in real time.
Two different storm structures were used for radar
rainfall validation. The first storm has the same
structure as the calibration and second storm has
different structure. The parameters obtained from
the calibration of algorithm 1, 3 and 4 and the
matching CDF  of the generated reflectivity
{algorithm 2)transformed reflectivity (algorithmS)
and raingauge rainfall were used to estimate the
final radar rainfall for validaiion to both storm
structures. Table 2. present the R-square for the
two validation cases.

Tabie 2. Results: R-square for radar rainfall
validation,

Algorithm Standard Deviation of g,

0.1 0.2 0.3

-0.028/-1.234 [0.011/-1.21910.019/-1.162

2 0.787/-0.008 |0.746/-0.01710.661/-0.045
3 (.762/0.075 |0.742/-0.07810.635/0.053
4 0.811/0.065 | 0.779/0.08 [ 0.730/0.044

5% 0.914/-0.027 10.870/-0.017|0.802/-0.054

xxx/yyy = same storm/different storm
3.3 Discussion of Results

The above calibration and validation resuits can he
surninarised as follows:

Step3: Estimate the final radar rainfall based on
matching the CDFs of the transformed
reflectivity and the raingauge rainfall
obtained-from-step 2.

The R-square values that were obtained for the

o Calibration: Table 1 shows that the
optimisation approach associated with range effect
correction scheme gives the most accurate radar
rainfall (highest-R-sguare} when compared to-the
existing radar rainfall estimation methods.
Algorithm 2 (PMM) can improve R-square

synthetic radarestimated ralnfall corresponding to
the different noise levels for each algorithm are
presenied in Table 1.

Tabie 1. Results: R-square for radar rainfall
calibration.

Algorithm Standard Deviation of g,
6.1 0.2 0.3
1 -0.027 0.052 0.017
2 0.805 0.781 0716
3 0.806 0.784 0.724
4 0.818 0.793 0.738
S 0.973 0.874 0.790

* Proposed algorithm
3.2 Radar Rainfall Validation

Radar rainfall validation has been carried out in
order io,test the applicability of the radar estimated

significantly compared {0 the use of default
parameters (algorithmm 1), This improvement
occurs because the CDF of reflectivity is forced o
aftain the same shape as the TDF of raingauge
rainfall.

From the calibration results it is found that the
proposed aigorithm (algorithm 5) gives the highest
R-square compared to other methods. This 18
hecause the CDF of a transformed reflectivity that
was free from range dependent biases was used to
match with the CDF of raingauge rainfall. This
result corresponds to the fact that the transformed
reflectivity or equivalently, the unbiased radar
rainfall, has the same distributional characteristics
as the measured rainfail.

= Validation: The proposed algorithm gives a
higher R-square than using the prescribed
parametric refationship alone when validation is
made on the same storm structure (see Table 2).




In most of the cases. the R-square decreases when
the noise level increases. The R-square presented
in the above table shows that all of the algorithms
give inaccurate radar estimated rainfall when using
different storm structure for validation. These
results illustrate the simple fact that one needs to
have records for calibration that reflect the type of
events that could be expected o oceur in future. If
that is the case, the choice of the algorithm used
should not affect the accuracy of the results
obtained.

4. TESTING THE EFFICIEMCY AND
APPLICABILITY OF RADAR
ESTIMATED RAINFALL ALGORITHMS
(REAL DATA)

The G-month 1.5 km CAPPI {Constant Altitude
Plan Position Indicator) reflectivity data record
from the Kurnell radar at Sydney and 89 hourly
raingauges rainfall obtained from ALERT stations
tocated within 1530 km of the radar (as illustrated in
Figure 1.) were used in this study. The reflectivity
data are in Cartesian grids with 256 x 256 km
extent and 1 km, 10 minute resolution. Storm
classification has been carried oul by considering
both radar images and average rainfall intensity
from the raingauge network, Storms were
classified into widespread and convective types,
the former usually coinciding with light rain and
the latter with heavy rain. A non-quantitative
yvisual interpretation_was used. in identifying the

unbiased radar reflectivity with raingauge rainfal
CDF's. Range dependent effects and different
storm types have been considered as {actors that
cause biases mn radar estimated rainfall.

4.1 Calibration

A plot of the average reflectivity and average
rainfall intensity with range from the radar sile
(Figure 2), found that the trend of the average
reflectivity with range corresponds to the average
rainfall intensity. Therefore, in this study we
consider that there is no range dependent bias in
the observed reflectivity data. Hence, we assumed
that only the biases due to different storm types
remain in the observed rteflectivity data. To
eliminate these biases, the radar rainfall has been
calibrated  separately  for  convective  and
widespread storms. The calibration has been
performed at an hourly time step. Quality control
of rainfall-reflectivity data for the analysis has
been carried out by using only the rainfall amounts
which are greater than 0.3 mm/h, from raingauges
where the correlation  coefficient  between
raingauge  rainfall  and  the  comesponding
reflectivity are higher than 0.3 when all storms are
considered  together. The Z-R  relationship
parameters have been estimated by using an
oplimisation scheme which minimises the RMSE
between radar rainfall and raingauge rainfall.

It shouid be noted that since the calibration has

storm  iypes. Storms that occurred  during
November 2000 to April 2001 were selected.
These included three convective storms and six
widespread events:
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since there are no corrections for range dependent
bias in the observed reflectivity, the proposed
algorithm collapses to the PMM approach, Three
calibration strategies were tested. Firstly the
prescribed parametric relationship, secondly the
PMM. . method,.. and.. lastiy..the .. use. .ol defauls
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Figure 1. The spatial extent of the Kurnell Radar
and  Sydney raingauge network.
{Circles correspond to 50 kra, 100 km,
150 km and 200 km radar range. The Y
axis corresponds to the north direction.)

As in the synthetic case, the proposed algorithm
will give the best results when the final radar
rainfall has been estimated from the matching of

parameters (o estimate radar  rainfall.  To
investigate the performance of PMM when applied
to all storm types, all aine storms have been used
together for calibration. The calibration results are
presented in Table 3.
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Figure 2. Trend of average reflectivity and rainfall
intensity with range (using all 9 storms).
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Prescribed parameters (74.16) 1.76 1 3.06 0453
PMM - - | 331 10361
Default parameters 200 | 1.6 | 3.32 1 0.356

Frescribed parameters |81.251 1.62 ] 1.84 | 0.416
PMVM - - 1.90 {0.379
Default parameters 200 1 1.6 1 205 10272

Prescribed parameters | 77.06| 1.75 | 2.89 | 0.397
PMM - - 1310 {0304
Default pararmeters 200 | 1.6 ] 3.09 106.308

4.2 Discussion of Resulis

From the calibration results, it is evident that storm
type affects the parameters of the Z-R relationship.
The RMSEs obtained from the prescribed
parametric relationship are better than those from
PMM, for both storm types. This is to be expected
unless the prescribed relation is substantially
different to the true, as the parameters A and B are
estimated to minimise the resulting error. A
validation exercise is needed to confirm the atility
of the estirnated coefficients.

5. COMNCLUSIONS

using  appropriately  {ormulated  parametric
relationships between observed refiectivity and
physical nature of storms. After we obtain the
unbiased reflectivity, the final radar rainfall will be
estimated by matching their CDF to the CDF of
raingauge rainfall. Results from this work will be

presented at a later date.
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